1.1.我国现在最常用的刀具材料有哪些? 2. 什么是硬质合金? 3. 刀具材料应具有那些性能

2.自动化金属材质有哪些

3.如何正确选用陶瓷刀具材料

1.我国现在最常用的刀具材料有哪些? 2. 什么是硬质合金? 3. 刀具材料应具有那些性能

纳米硬质合金价格表-纳米硬质合金价格表最新

最传统的高速钢W18Cr4V,含钨量达18%。后来典型的W6Mo5Cr4V2(M2)和W9Mo3Cr4V,含钨也达到6%和9%。硬质合金的含钨量也非常高,钨钴类(加工铸铁及铝合金等常用,如国内典型的YG系列)或钨钴钛类(加工长切屑的钢件常用,如国内典型的YT系列)的碳化钨含量基本上都在80%以上,如YG6的碳化钨含量高达90%以上。 7 G Y EA

我国世界钨储量第一,占全球供应量的为85%。钨主要用于硬质合金、包括高速钢在内的特种钢等产品,并被广泛用于国防工业、航空航天、信息产业,被称为“工业的牙齿”。钨的耐温性能非常好,因此在武器工业中钨合金被大量用,比如枪、炮的发射管中都会用到钨的合金。军事方面用做穿甲弹的弹丸,都是用比坦克装甲硬得多的高密度合金钢、碳化钨等材料制成的。钨的化学性能非常稳定,在1000℃以上的高温下也不会氧化,硬度也不会明显下降。这点对防破甲弹的高温金属射流十分有利。钨合金的机械性能与贫铀相差无几,却没有贫铀的放射性,有利于环境的保护。钨的硬度极高,主要用于钢铁金属的合金,加入钨后钢的硬度会有极大的提高,在金属加工领域的刀具材料高速钢就是含钨的合金。如果一个国家没有钨的话,在目前技术条件下的金属加工能力就会出现极大的缺失,直接导致机械行业的瘫痪,所以称之为战略金属。此外在照明领域也必须使用钨做为灯丝。 _L {#~ B

其次应该是钼。 J \ ,wi/

高速钢被分为钨系和钨钼系两个大系,由于钨资源的紧缺性和钨钼系高速钢的工艺性良好,钨钼系高速钢成为高速钢的主流派系。在高速钢中,一份钼对刀具性能的贡献大约相当于两份钨。因此,我们会看到说W6Mo5Cr4V2(M2)的“钨当量”是16%,W9Mo3Cr4V的“钨当量”是15%等等。我国钼储量居世界第二,占全球供应量的24%。钼可以用于炼制各类合金钢、不锈钢、耐热钢、超级合金,在军事工业中应用广泛,也被称作“战争金属”。 uv&_vg0J

此外钛、钴、铬、铌、钽等等也是刀具中常会用到的稀有金属。 -}) cofj}b

钛是另一类硬质合金钛基硬质合金(国内常常称其为“金属陶瓷”)的主要成分。钛基硬质合金是以TiC或Ti(C,N)为主要成份(占60%~80%以上),Ni-Mo或Ni-Co-Mo作粘结相的硬质合金。钛基硬质合金的性能介于陶瓷和WC基硬质合金之间,可以用比普通钨基硬质合金更高的切削速度切削,加工的工件表面质量好。因此,特别适于钢材和铸件的精加工和半精加工。在国外,TiC基和Ti(C,N)基硬质合金所占比重已达到可转位刀片总需求量的30%以上。近几年来,随着涂层钛基硬质合金(可单涂层,也可用多元复合涂层)、超细晶粒和纳米晶粒以及梯度结构钛基硬质合金的开发,使材料的综合性能大大提高,应用范围更加扩大。 N 5*=P;y9h

钛还是刀具涂层的最主要的成分之一。TiC、TiN、Ti(CN)、TiAlN等都是我们最常见的涂层品种。 # }hzU q

据了解我国的钛资源约占全球钛资源的38%,换算成TiO2总储量达90亿多吨,为世界第一。绝大部分在攀枝花地区。钛具有所有工业金属材料中最高的比强度(抗拉强度和密度之比):钛的密度为4.54克/mm常椅伦刺缕淇估慷任33.6—67.2千克/mm(纯钛抗拉强度最高可达180千克/mm),挤压强度为40%~55%,整体强度是铝的2倍,比强度是铝的1.3倍;而且它在-253℃到500℃这样宽的温度范围内都能保持如此的高强度。钛一直主要用于航天军工精密部件。 j*l3 F d~

钴在高速钢刀具中的作用我在《漫笔高速钢》一文中已经提及:钴对于提高高速钢的性能的作用也是明显的,它能促使碳化物在淬火加热时更多地溶解在基体内,利用高的基体硬度来提高耐磨性。这种高速钢硬度、热硬性、耐磨性及可磨性都很好。 8 ^6g n.

钴在硬质合金中的主要作用是粘结剂,它能为硬质合金刀具提供一定的韧性。含钴量较少的刀具,硬度比较高,但韧性经常不够。因此,人们常常用提高钴含量的方法来适当地降低硬度而改善韧性。因为刀具一旦发生崩刃,再高的耐磨性也无从体现。钴加强是后来人们找到的一个新的解决方案。它可以在保持硬质合金芯部高的硬度以提供足够的支撑力的同时,表面具有较高的钴含量而可以承受更高的切屑冲击。这一技术据说是早年由在肯纳金属服务的华人科学家刘一雄博士参与开发的(当时的牌号为KC850),现在山特维克可乐满、山高等也已经提供这样的产品。 d0Qz_qzc

但我国的钴资源紧缺,已探明钴金属估有储量约数十万吨。分布于全国24个省(区)。国外钴资源丰富,储量约为520万吨,但绝大部分产在风化型红土镍矿、岩浆型硫化铜镍矿和沉积型砂岩铜矿之中,且95%以上集中分布在民主刚果、澳大利亚、古巴、赞比亚、新喀里多尼亚和俄罗斯等少数国家。 o p l}gpmB

铬在所有的高速钢中的含量几乎都是4%,以至国际标准化组织在制定高速钢牌号的国际标准时,规定可以省略铬含量的符号。如W18Cr4V的代号是HS18-0-1-0(前一个0是代表Mo含量为0,后一个0是代表Co含量为0),W6Mo5Cr4V2的代号是HS6-5-2-0,W2Mo9Cr4VCo8(美国牌号M42)的代号是2-9-1-8。 HB PZgk| [

现在发展出一些含Cr的刀具涂层。巴尔泽斯推出的G6涂层就是一种AlCrN涂层。据巴尔泽斯称,这种涂层的耐磨性、热硬性和抗氧化性都有很大提高。 vF #;X]a

但是,我国的铬资源相当匮乏。 aQ>iNa0dh

铌、钽经常以碳化铌和碳化钽的方式出现在硬质合金的成分表中,在所有的硬质化合物中碳化钽的硬度是最高的。铌、钽和钨、钼一样都是稀有高熔点金属,它们的性质和用途也有不少相似之处。铌、钽最主要的特点是耐热。它们的熔点分别高达摄氏2400度和将近3000度,不要说一般的火势烧不化它们,就是炼钢炉里烈焰翻腾的火海也奈何它们不得。因此他们在刀具的成分中也占有一席之地。

自动化金属材质有哪些

问题一:生产非标自动化设备常用的材料都有哪些 传感器、气缸、金属件、电气元件等等,具体可以咨询中、利、特、自动化公司。

问题二:设计中常用金属材料有哪些?其主要特点是什么 设计,需要理论力学+材料力学+结构力学还有金属工艺学的垫底。

何况修完这些,也只是初级阶段。这里的篇幅和时间都奉陪不起。

如果只要皮毛,查看金属材料手册乃至这方面的采购手册[比如实用五金手册]可有所奏效。

问题三:金属耐磨材料有哪些? 根据金属耐磨材料的成分北京耐默公司将金属耐磨材料分成以下五类:

一是高锰钢系列:如高锰钢(ZGMn13)、KNMn19Cr2(专利)高锰合金(ZGMn13Cr2MoRe)、超高锰合金(ZGMn18Cr2MoRe)等;

二是抗磨铬铸铁系列:如高、中、低铬合金铸铁(Cr15MoZCu);

三是耐磨合金钢系列:如中、低、高碳多元合金钢(如ZG49SiMnCrMo和ZG35Cr2MONIRe);

四是奥贝球铁(ADI)系列

五是各类复合或梯度材料及硬质合金材料、KN纳米合金(专利产品):如碳化铬复合材料(Cr2C3=Q235)、高能离子注渗碳化钨材料(WCSP)、高韧硬质合金(YK25.6)、KN999纳米合金等。

问题四:机械设备(自动化设备)组成零件是什么材料,是钢还是铁还是其他? 机械零件基本上是用钢材,机架等一般用铸铁的比较多。理论上零件加工切削加工即可,但是现在应该是锻造后再精加工,这样的零件强度比切削加工的要好。零件加工出来并不能成为成品,最为关键的是最后的热处理程序。包括整个零件的热处理和表面热处理。

大多数机械零件都有国家标准,在设计时尽量选用标准零件,在市场上很容易找到,也不需要全部找工厂定制,非标零件定制价格一定不便宜的。当然如果是机器人之类,那一定要定制,而且材料也不是普通钢材。

厂家应该找当地汽车工业较发达的地区,建议在上海找。

问题五:金属材料工程专业与机械设计制造及其自动化专业哪个更有前途 这个要看具体情况,个人认为若准备考研或者从事科研工作,准备在学术上有所成就,学金属材料工程专业有潜力,也更有前途。若准备直接就业,机械类的比较好,适用面广,工作相好找,工作也很容易上手,但是后续发展不足,有自己的制约!

总之,个人认为学材料比较有前途!不论是搞学术还是以后就业,材料专业的后续发展都不错!只是材料专业前期优势较机械专业弱一些!这些主要体现在前期工作中,材料专业要求一定得工作经验!而机械容易上手,但是,材料后期发展很好!

问题六:新型金属材料 新型金属材料种类繁多,它们都属合金。

形状记忆合金 形状记忆合金是一种新的功能金属材料,用这种合金做成的金属丝,即使将它揉成一团,但只要达到某个温度,它便能在瞬间恢复原来的形状。形状记忆合金为什么能具有这种不可思议的“记忆力”呢?目前的解释是因这类合金具有马氏体相变。凡是具有马氏体相变的合金,将它加热到相变温度时,就能从马氏体结构转变为奥氏体结构,完全恢复原来的形状。

最早研究成功的形状记忆合金是Ni-Ti合金,称为镍钛脑(Nitanon)。它的优点是可靠性强、功能好,但价格高。铜基形状记忆合金如 Cu-Zn-Al和 Cu-Al-Ni,价格只有Ni-Ti合金的10%,但可靠性差。铁基形状记忆合金刚性好,强度高,易加工,价格低,很有开发前途。表7-3列出一些形状记忆合金及其相变温度。

形状记忆合金由于具有特殊的形状记忆功能,所以被广泛地用于卫星、航空、生物工程、医药、能源和自动化等方面。

在茫茫无际的太空,一架美国载人宇宙飞船,徐徐降落在静悄悄的月球上。安装在飞船上的一小团天线,在阳光的照射下迅速展开,伸张成半球状,开始了自己的工作。是宇航员发出的指令,还是什么自动化仪器使它展开的呢?都不是。因为这种天线的材料,本身具有奇妙的“记忆能力”,在一定温度下,又恢复了原来的形状。

多年来,人们总认为,只有人和某些动物才有“记忆”的能力,非生物是不可能有这种能力的。可是,美国科学家在五十年代初期偶然发现,某些金属及其合金也具有一种所谓“形状记忆”的能力。这种新发现,立即引起许多国家科学家的重视。研制出一些形状记忆合金,广泛应用于航天、机械、电子仪表和医疗器械上。

为什么这些合金不“忘记”自己的“原形”呢?原来,这些合金都有一个转变温度,在转变温度之上,它具有一种组织结构,面在转变温度之下,它又具有另一种组织结构。结构不同性能不同,上面提及美国登月宇宙飞船上的自展天线, 就是用镍钛型合金作成的,它具有形状记忆的能力。这种合金在转变温度之上时,坚硬结实,强度很大;而低于转变温度时,它却十分柔软,易于冷加工。科学家先把这种合金做 成所需的大半球形展开天线,然后冷却到一定温度下,使它变软,再施加压力,把它弯曲成一个小球,使之在飞船上只占很小的空间。登上月球后,利用阳光照射的温度,使天线重新展开,恢复到大半球的形状。

形状记忆合金问世以来,引起人们极大的兴趣和关注,近年来发现在高分子材料、铁磁材料和超导材料中也存在形状记忆效应。对这类形状记忆材料的研究和开发,将促进机械、电子、自动控制、仪器仪表和机器人等相关学科的发展。

高温合金 涡轮叶片是飞机和航天飞机涡轮喷气发动机的关键部件,它在非常严酷的环境下运转。涡轮喷气发动机工作时,从大气中吸入空气,经压缩后在燃烧室与燃料混合燃烧骇然后被压向涡轮。涡轮叶片和涡轮盘以每分钟上万转的速度高速旋转,燃气被喷向尾部并由喷筒喷出,从而产生强大的推力。在组成涡轮的零件中,叶片的工作温度最高,受力最复杂,也最容易损坏。因此极需新型高温合金材料来制造叶片。

贮氢合金 氢是21世纪要开发的新能源之一。氢能源的优点是发热值高、没有污染和资源丰富。贮氢合金是利用金属或合金与氢形成氢化物而把氢贮存起来。金属都是密堆积的结构,结构中存在许多四面体和八面体空隙,可以容纳半径较小的氢原子。如镁系贮氢合金如MgH2,Mg2Ni等;稀土系贮氢合金如LaNi5,为了降低成本,用混合稀土 Mm代替La,推出了MmNiMn, MmNiAl等贮氢合金;钛系贮氢合金如TiH2,TiMn1.5。贮氢合金用于氢动......>>

问题七:金属材料工程与机械设计制造及其自动化哪个好 金属材料工程更加偏向材料.可能会划分到材料院系,而机械专业铁定是工学院耽的.

机械主要是应用,数理化学的都是应用型的.主要基础课程是力学,机械基础和电工.

而金属材料的话,我认为化学可能会学的很深入.

机械也学金属材料,不过就一本书,课程的名称叫做工程材料.

就业的话,机械很广.

问题八:结构材料有哪些 结构材料(structural material)是以力学性能为基础,以制造受力构件所用材料,当然,结构材料对物理或化学性能也有一定要求,如光泽、热导率、抗辐照、抗腐蚀、抗氧化等。

建筑工程中主体结构材料有钢筋水泥 沙子石子

现代通信、计算机、信息网络技术、集成微机械智能系统、工业自动化和家电等以电子信息技术为基础的高技术产业迅速发展,推动了系列信息功能材料的研究、发展,以及广泛应用。研制与开发具有高比强度、高比刚度、耐高温、耐磨损、耐腐蚀等性能结构材料,是新一代高性能结构材料发展的主要方向。材料细分领域庞大复杂,涉及约70家A股上市公司。我们根据主要新材料的发展方向,将其分为金属新材料、新型无机非金属材料、高分子及复合材料三大类。

金属新材料按功能和应用领域可划分为高性能金属结构材料和金属功能材料。高性能金属结构材料指与传统结构材料相比具备更高的耐高温性、抗腐蚀性、高延展性等特性的新型金属材料,主要包括钛、镁、锆及其

合金、钽铌、硬质材料等,以及高端特殊钢、铝新型材等。金属功能材料指具有辅助实现光、电、磁或其他特殊功能的材料,包括磁性材料、金属能源材料、催化净化材料、信息材料、超导材料、功能陶瓷材料等。

无机非金属材料指某些元素的氧化物、碳化物、氮化物、硼化物、硫系化合物和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的无机材料,主要包括陶瓷、玻璃、水泥、耐火材料、搪瓷、磨料等。新型无机非金属材料指经过微观结构设计、精确化学计量、先进制备技术而达到不含有害元素且具有特定性能的材料。

从材料种类看,新型陶瓷具有强度高、耐高温、耐磨损等特点,主要应用于汽车、火车、飞机、机械等制造业,个股可关注生产陶瓷轴承的轴研科技和生产陶瓷刹车片的博云新材;陶瓷纤维具有重量轻、热稳定性好

、导热率低的特性,广泛应用于节能环保、机械、冶金化工等领域,个股可关注北京利尔、鲁阳股份;新型玻璃中,玻璃基板是构成液晶显示器件的一个重要基本部件,全世界仅4家企业能够制造玻璃基板,国内企业彩虹股份已取得玻璃基板的技术突破,有望在年底前实现量产,可保持关注。

高温结构陶瓷材料是先进陶瓷材料发展的重点,其主要应用目标是燃气轮机和重载卡车用低散热柴油机。采用陶瓷发动机可以提高热效率,降低燃料消耗。

问题九:西安工业大学除了测控技术与仪器、金属材料工程、机械设计制造及其自动化这三个专业,还有什么好专业 光电不错,其实自动化还不如入电气工程及其自动化好在找工作!

问题十:金属材料化学成分用什么来分析 鉴定金属由哪些元素所组成的试验方法称定性分析。测定各组分间量的关系(通常以百分比表示)的试验方法称定量分析。若基本上采用化学方法达到分析目的,称为化学分析。若主要采用化学和物理方法(特别是最后的测定阶段常应用物理方法),一般采用仪器来获得分析结果,称为仪器分析。化学分析根据各种元素及其化合物的独特化学性质,利用化学反应,对金属材料进行定性或定量分析。定量化学分析按最后的测定方法可分为重量分析法、滴定分析法和气体容积法等三种。重量分析法是使被测元素转化为一定的化合物或单质与试样中的其他组分分离,最后用天平称重方法测定该元素的含量。滴定分析法是将已知准确浓度的标准溶液与被测元素进行完全化学反应,根据所耗用标准溶液的体积(用滴定管测量)和浓度计算被测元素的含量。气体容积法是用量气管测量待测气体(或将待测元素转化成气体形式)被吸收(或发生)的容积,来计算待测元素的含量。由于化学分析具有适用范围广和易于推广的特点,所以至今仍为很多标准分析方法所采用。仪器分析根据被测金属成分中的元素或其化合物的某些物理性质或物理与化学性质之间的相互关系,应用仪器对金属材料进行定性或定量分析。有些仪器分析仍不可避免地需要通过一定的化学预处理和必要的化学反应来完成。金属化学分析常用的仪器分析法有光学分析法和电化学分析法两种。光学分析法是根据物质与电磁波(包括从γ射线至无线电波的整个波谱范围)的相互关系,或者利用物质的光学性质来进行分析的方法。最常用的有吸光光度法(红外、可见和紫外吸收光谱)、原子吸收光谱法、原子荧光光谱法、发射光谱法(看谱分析)、浊度法、火焰光度法、X射线衍射法、X射线荧光分析法以及放射化学分析法等。电化学分析法是根据被测金属中元素或其化合物的浓度与电位、电流、电导、电容或电量的关系来进行分析的方法。主要包括电位法、电解法、电流法、极谱法、库仑(电量)法、电导法以及离子选择电极法等。仪器分析的特点是分析速度快、灵敏度高,易于实现计算机控制和自动化操作,可节省人力,减轻劳动强度和减少环境污染。但试验装工通常较庞大复杂,价格昂贵,有些大型、复杂、精密的仪器只适用于大批量和成分较复杂的试样分析工作。参考:xkjwfg

如何正确选用陶瓷刀具材料

陶瓷刀具材料是一种先进的切削刀具材料,因其优良的切削性能和高性价比而备受青睐。本文介绍了近十几年来发展迅速的陶瓷刀具材料的性能及品种,并针对不同类型陶瓷刀具材料的性能优劣,给出选用建议。

潜质巨大的新型刀具材料

随着现代科学技术和生产的发展,各种新型的难加工材料在产品中大量应用,传统的硬质合金刀具已难以满足生产需要,而陶瓷刀具则以其优异的耐热性、耐磨性、良好的化学稳定性和高性价比而受到了人们的青睐。尤其是在高速切削领域和难加工材料方面,显示出了传统刀具无法比拟的优势。

利用陶瓷刀具加工普通钢、铸铁、淬硬钢、高锰钢、镍基高温合金、粉末冶金烧结件、玻璃钢和各种工程塑料等难加工材料时,刀具寿命可比硬质合金刀具高几倍甚至十几倍。在生产中它不但能用于一般的车、镗和铣削加工,而且已成功地用于孔加工刀具上;除可在普通机床上使用外,也能有效地用于数控机床和加工中心等高效设备上,被国际上公认为是当代提高生产效率最有潜质的一种刀具。此外,与金刚石和立方氮化硼等超硬刀具相比,陶瓷刀具的价格相对较低(陶瓷刀具的主要原料氧化铝、氧化硅等是地壳中最丰富的成份,取之不尽,用之不竭),因此,有人认为:“随着现代陶瓷刀具材料性能的不断改进,今后它将与涂层硬质合金刀具、金刚石和立方氮化硼等超硬刀具一起成为高速切削、干切削和硬切削的三种主要刀具。”图1所示为用陶瓷刀具以硬车削出的而不是磨削出的渗碳淬硬传动齿轮(57 HRC-59 HRC)的同步圆锥部分、内孔和背面的应用实例。

陶瓷刀具材料的性能优劣

与硬质合金刀具相比,陶瓷刀具硬度高达92-95 HRA,耐磨性好,在相同条件下加工钢料时,它的磨损仅为P10(YT15) 硬质合金刀具的1/15,刀具寿命长。同时,陶瓷刀具与钢铁等金属材料的亲和力小,摩擦系数低,抗黏结和抗扩散能力强,切削时不易黏刀及产生积屑瘤,加工表面质量好。陶瓷刀具的耐热性也很好,在1,200℃时仍能保持80HRA左右的高硬度,所以适合在高温下进行高速切削和干切削,而价格又远低于切削性能与之相近的金刚石和立方氮化硼刀具。表1中列出了陶瓷与常用硬质合金两种材料性能的对比。

从表1中可以看出,陶瓷刀具的主要缺点是抗弯强度、断裂韧度和弹性模量低,脆性大。长期以来主要作为精加工刀具,占各类刀具材料中的比重很小。但近十几年来,由于材料科学和制造技术的进步,通过控制原料纯度和晶粒尺寸,采用了热压和热等静压烧结工艺等方法(用热压烧结制成的陶瓷,其强度和硬度都比过去冷压法好;而用热等静压法制成的陶瓷,其组织致密,强度更高﹐抗崩刃性能好),添加各种碳化物、氮化物、硼化物和氧化物等可改善陶瓷的性能,并通过颗粒、晶修、相变、微裂纹和几种增韧机制的协同作用提高其断裂韧度和强度,不仅使陶瓷的抗弯强度提高到0.9-1.0 GPa(最高可达1.3-1.5 GPa,已与硬质合金相当),而且使其抗冲击性能也有很大提高,应用范围日益扩大,除可用于一般精加工与半精加工外,还可用于冲击负荷下的粗加工。

陶瓷刀具材料的品种分类

现代陶瓷刀具材料大多数为复合陶瓷,其种类及可能的组合如图2所示。目前国内外广泛使用的陶瓷刀具材料以及正在开发的陶瓷刀具材料,基本上都是根据图2所示方法组合,采取不同的增韧补强机制来进行显微结构设计的,其中以氧化铝(Al2O3)基和氮化硅(Si3N4 )基陶瓷刀具材料的应用最广泛。

氧化铝(Al2O3)基陶瓷刀具材料

纯氧化铝陶瓷

纯氧化铝陶瓷中的Al2O3成份占99.9%以上,多呈白色,俗称白陶瓷。这是早期使用的陶瓷,由于其强度低,抗热振性及断裂韧性较差,切削时易崩刃,只适用于300HBW以下的铸铁和钢的连续表面粗加工和半精加工,使用范围非常有限,故目前已被其它各种Al2O3基复合陶瓷所取代。

氧化铝-碳化物系复合陶瓷

它是在Al2O3基体中加入TiC或SiC等成份经热压烧结而成的陶瓷,是目前国内外使用最多的陶瓷刀具材料之一。氧化铝-碳化物系复合陶瓷适于加工各种钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、轴承钢、不锈钢、淬硬钢等)和各种铸铁(包括冷硬铸铁、高铬铸铁等),也可加工铜合金、石墨、工程塑料和复合材料;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。

纳米金属陶瓷刀具

它是在传统的Al2O3 / TiC金属陶瓷中通过加入纳米材料TiN(氮化钛)和AlN(氮化铝),经改性而成的一种新型Al2O3基陶瓷刀具,可细化晶粒和优化材料力学性能。使用表明,这是高技术含量及高附加值的新型刀具,可部分取代K20(YG8)、P10(YT15)等面广量大的硬质合金刀具,刀具寿命可提高2倍以上,生产成本则与K20(YG8)刀具相当或稍低。目前,纳米陶瓷及纳米复合陶瓷刀具已成为高技术陶瓷材料研究开发的一个前沿领域。

Al2O3 / SiCw晶须增韧陶瓷

在Al2O3陶瓷基体中添加20%-30% SiCw晶须(是直径小于0.6μm,长度为10?80μm的单晶,具有一定的纤维结构,抗拉强度为7 GPa,抗拉弹性模量超过700 GPa)而成的Al2O3 / SiCw晶须增韧陶瓷,可有效地用于断续切削及粗车、铣削和扩孔等工序,适于加工镍基合金、高硬度铸铁和淬硬钢等材料。SiCw晶须作用类似钢筋混凝土中的钢筋,能成为阻挡或改变裂纹发展的障碍,使其韧性大幅度提高。

Al2O3 /(W,Ti)C梯度功能陶瓷

它是通过控制陶瓷材料的组成分布以形成合理的梯度,从而使刀具内部产生有利的残余应力分布来抵消切削中的外载应力。具有表层热导率高、有利于切削热的传出、热膨胀系数小、结构完整性好、不易破损等特点。用其加工钢铁材料时的刀具寿命可比同类Al2O3/(W, Ti)C复合陶瓷SG-4高1-1.5倍,并且刀具有很好的自砺性,崩刃后仍能进行正常切削。

Al2O3 / TiB2 和Al2O3 / ZrO2 等复合陶瓷

在Al2O3中添加TiB2、Ti(C,N) 、ZrO2等成份的陶瓷可进一步提高材料的物理机械性能和切削加工性能,其中以Al2O3 / TiB2和Al2O3 / ZrO2使用较多。如用Al2O3/ TiB2陶瓷刀具加工40CrNiMoA钢时,刀具寿命为Al2O3/ TiC刀具的3倍,加工4Cr5MoVSi钢时,刀具抗边界磨损能力为Al2O3 / TiC刀具的2倍。而Al2O3 / ZrO2陶瓷刀具材料的断裂韧度、强度和耐磨性高,抗崩刃性能好。如用CC620刀片粗车和半精车铸铁和球墨铸铁等材料,切削速度可达900 m/min;用于加工合金钢时,粗车切削速度可达200 m/min,精车切削速度可达800 m/min。

氮化硅(Si3 N4)基陶瓷刀具材料

Si3N4陶瓷是一种非氧化物工程陶瓷,其硬度可达1,800-2,000 HV,热硬性好,能承受1,300-1,400℃的高温,与碳和金属元素化学反应较小,摩擦系数也较低。这类刀具适于切削铸铁、高温合金和镍基合金等材料,尤其适用于大进给量或断续切削。由于纯Si3N4 陶瓷刀具在切削长切屑(如软钢)时极易产生月牙洼磨损,所以新一代Si3N4 陶瓷均为Si3N4 复合陶瓷刀具。最新的Si3N4 复合陶瓷不仅可用于粗加工,而且可用于断续切削和有冷却液的切削。目前Si3N4基陶瓷刀具的崩刃率为2%-3%,与硬质合金相当,可以大量应用于生产线。该类陶瓷刀具的缺点是加工性比普通Al2O3陶瓷差。

Si3 N4 / TiC复合陶瓷

其韧性和抗弯强度高于Al2O3基陶瓷,而硬度却不降低;热导率亦高于Al2O3基陶瓷,故在生产中应用比较广泛。

Si3 N4 / SiCw晶须增韧陶瓷

它是在Si3N4基体中加入一定量的碳化物晶须而成,从而可提高陶瓷刀具的断裂韧度。中国生产的牌号有SW21(Si3N4/ SiCw)与FD03(Si3N4/TiCw)等。一些国外切削专家认为,用Si3N4基陶瓷切削钢材的效果不如Al2O3 基复合陶瓷,故不推荐用其加工钢材。但用FD03刀片切削淬硬钢(60-68HRC)、高锰钢、高铬钢和轴承钢时也有较好的效果。

赛阿龙(Sialon)陶瓷

它是以Si3N4为硬质相,Al2O3 为耐磨相,并添加少量助烧结剂Y2O3,经热压烧结而成,常称赛阿龙(Sialon)。Sialon实际上是Si3N4中Si、N原子被Al和O原子置换所形成的一大类固溶体的总称,主要有β-Sialon、α-Sialon、O-Sialon 3种,尤以前两种最为常见。这种陶瓷的抗弯强度和断裂韧度较高,抗氧化能力和高温抗蠕变能力好,热导率高,热膨胀系数小,抗热振性好,适于粗车及铣削铸铁和镍基高温合金等难加工材料。除能采用较大的进给量及切削速度高速加工铸铁和高温合金外,并可在面铣刀上采用双正前角(侧前角和背前角均为正值)。

涂层Si3N4陶瓷刀具

Si3N4基陶瓷的韧性优于Al2O3基陶瓷,但其耐磨性稍差。切削铸铁时,Si3N4陶瓷刀具的后刀面磨损大于Al2O3陶瓷刀具;切削钢料时,Si3N4陶瓷刀具的月牙洼磨损较大。为此,国外在Si3N4基陶瓷表面上施以TiN、TiC、Ti(C﹐N)和Al2O3等涂层,可单涂层,也可用多涂层。经涂层后的Si3N4陶瓷刀具磨损量为未涂层的1/3,使加工普通铸铁的切削速度达到200?1,000 m/min,并且刀具寿命更长。比如Sandvik公司的GC1690涂层氮化硅陶瓷刀具,在加工高强度灰铸铁时的进给量达0.4 mm/r,切削速度为500 m/min。山高(Seco)刀具公司的涂层氮化硅陶瓷刀具,切钢时抗月牙洼磨损的能力强,其切削速度可达Al2O3基陶瓷刀具的切削速度,但进给量却大于后者而接近涂层硬质合金刀具,使材料切除率大大提高。

如何选用陶瓷刀具材料

目前,Al2O3基陶瓷和Si3N4基陶瓷均已成功地用于制作车刀、镗刀和铣刀等的切削部分材料。陶瓷刀具的结构目前大多采用机夹可转位刀片的结构形式。刀片的形状有三角形、正方形、长方形、棱形和圆形等。

陶瓷刀片材料的品种多达几十种,不同种类的陶瓷刀片有着不同的应用范围,故须正确选择刀具陶瓷的种类与牌号,使其与被加工材料相“匹配”。除需要满足技术要求外,还应满足经济和环保性能的要求。

氧化铝(Al2O3)基陶瓷具有良好的耐磨性、耐热性,且其高温化学稳定性好,不易与铁元素之间发生相互扩散或化学反应,其耐磨性和耐热性均高于氮化硅(Si3N4)基陶瓷刀具,所以Al2O3基陶瓷刀具的应用范围最广,适于对钢材、铸铁及其合金的高速切削加工;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。

氮化硅(Si3N4)基陶瓷刀具的断裂韧性和抗热振性高Al2O3基陶瓷刀具,最适于断续加工铸铁和高温合金等材料,一般不宜用来加工产生长切屑的钢材(如正火和热轧状态),用Si3N4基陶瓷刀具切削45号钢时的刀具磨损比切削灰铸铁时高得多。

赛阿龙(Sialon)陶瓷最适于加工各种铸铁(如灰铸铁、球墨铸铁、冷硬铸铁、高合金耐磨铸铁等)和耐热合金,通常不推荐用其加工钢材。

Inconel 718(GH169)镍基合金是典型的难加工材料,具有较高的高温强度、动态剪切强度,热扩散系数较小,切削时易产生加工硬化,导致刀具切削温度高、磨损速度加快。Al2O3 / SiCw晶须增韧陶瓷适合于加工硬度低的镍基合金,当切削速度为100?300 m/min时可获得较长的刀具寿命;ISCAR公司生产的一款IW7晶须增韧陶瓷(Al2O3 / SiCw)新牌号,来自加工Inconel 718、镍基耐热合金等高温合金材质涡轮盘的报告显示,相比于其它陶瓷刀片,切削性能和刀具寿命均有明显提高。Si3N4基陶瓷也可用于Inconel 718合金的加工。而Sialon陶瓷的韧性高,适合于切削经过固溶处理的Inconel 718(45HRC)合金。

此外,航空航天用的Kevlar和石墨类复合材料,用陶瓷刀具可实现切削速度300 m/min左右的高速切削加工。

必须指出,陶瓷刀片不像硬质合金那样在国际上有统一的分类,各生产厂都有各自的品种与牌号,不同厂生产的同类刀片性能上也有一定的差异,使用时须参照厂家产品样本来选择。为此,刀片牌号选定后必须在机床上先进行试切削,合格后方可以正式应用。

陶瓷刀具的应用建议

陶瓷刀具改变了传统的机械加工工艺,解决了生产中以前很多难以解决的加工问题。目前广泛应用于机械、治金、矿山、高速列车、风电、汽车、拖拉机、轴承、水泵、交通、能源、精密仪器、航空航天等行业并取得了显着的经济效益。

中国在陶瓷刀具的研究与开发方面具有优势,早在20世纪50年代就已在生产中使用。例如,中国开发的陶瓷与硬质合金复合刀片(FH系列),工件表面既有陶瓷材料高的硬度与耐磨性,而基体又有硬质合金较好的抗弯强度,其等效抗弯强度比同类陶瓷刀片平均提高20%,断裂韧度平均提高8.5%,而其抗破损能力提高更大,故能承受冲击负荷,并解决了陶瓷刀片镶焊困难等问题。此外,近几年国内外开发的刀具陶瓷新品种,比如适于加工各种铝合金(包括硅含量高的铝合金)的ZrO2基陶瓷、TiB2基陶瓷(硬度是氮化硅的2倍,其性能介于硬质合金和超硬材料CBN之间,用其加工淬硬钢和高温合金等材料时的刀具寿命可比硬质合金刀具长5-6倍),尽管它们的生产至今还未形成规模,但因性能优异﹐有广泛的用途,今后必将迅速发展。

使用陶瓷刀具的机床必须具有高刚度、大功率、高转速和高精度特点,这样才能充分发挥陶瓷刀具材料的性能,取得好的经济效益。此外,装夹工件的夹具和夹紧装置,必须可靠性强,以免加工时产生振动,使刀具破损。必须指出的是,目前生产中不少机床设备还不能满足陶瓷刀具的加工要求,所以它们的潜力未能得到充分发挥,今后随着数控机床和加工中心等高效设备应用的增多,必将进一步推动陶瓷刀具的使用。

由于陶瓷刀具材料的脆性较大,强度较低,故刀具前角通常取0°-10°,后角5°-12°。为了提高切削刃强度,刃口上须磨出负倒棱,倒棱宽度可取b =0.1-0.8 mm,倒棱前角 -10°- -20°;刀尖需适当修圆,修圆半径r =0.2-1.0mm。但刀尖修圆半径和负倒棱越大,会使切削力增大,发生颤振的机会也增多。因此当机床—夹具—刀具—工件的系统刚性不足时,尤其是在加工细长工件时,不宜采用过大的刀尖半径和负倒棱。

由于陶瓷刀具有良好的耐热性和耐磨性,故切削用量对刀具磨损影响比硬质合金刀具小。因此,切削时应根据被加工工件材料性质,在机床功率、工艺系统刚性和刀片强度允许前提下,尽量选用较大的背吃刀量(吃深)和切削速度进行切削,以充分发挥陶瓷刀具材料高温性能好的特点。而部分企业在使用陶瓷刀具时,认为采用较低切削速度可延长刀具的使用寿命。切削速度﹐车削普通钢和铸铁,一般Vc=200-600 m/min;加工硬度小65HRC的高硬度钢Vc=60-200 m/min;铣削钢和铸铁Vc=200-500 m/min;铣削耐热合金Vc=100-250 m/min,进给量0.05-0.08 mm/z 。

陶瓷刀具的刃磨应在工具磨床上用夹具刃磨,以保证刃磨质量。刃磨陶瓷刀具目前大多采用树脂结合剂的金刚石砂轮,其磨削质量对刀具切削性能有很大影响。对于可转位陶瓷刀片,原则上是不重磨的,因为重磨后其刀片的装夹尺寸及定位尺寸都会发生变化,在CNC机床加工中就要重新调整进刀尺寸,以保证工件尺寸的一致性。但一些工厂为了降低消耗,物尽其用,也可在工具磨床或刀具刃磨机上用金刚石砂轮进行刃磨,粗磨选用F80-F120粒度号,精磨、细磨用F180?F400粒度号,浓度为50%-100%,硬度为K-P级。刃磨时的切削用量可取:磨削速度20-30m/s,磨削深度f =0.005-0.02 mm/双行程(粗磨时取大值,精磨、细磨时取小值),工作台速度为V =10-15 m/min。